Cookie Consent by Free Privacy Policy website

Online informace pro lékárny



NAHRADÍ ŽÁROVKY LUCIFERIN?



Některé živé organismy, asi nejvíce známé světlušky nebo houby zajišťující efekt rozsvícených pařezů, jsou schopné procesu bioluminiscence. Jedná se o vyzařování světla díky oxidaci pigmentu luciferinu za přítomnosti enzymu luciferázy. Při této reakci se vyzařuje až 96 % energie ve formě světla a zbytek pak ve formě tepla. Přeměna energie je tedy velmi efektivní, což již několik desetiletí nedá vědcům spát. Zejména, pokud se zásoby fosilních paliv tenčí a energie je stále dražší.

Brněnští vědci z Loschmidtových laboratoří RECETOX na Přírodovědecké fakultě MUNI popsali inovativní a zároveň udržitelný způsob, jak svítit. Objasnili doposud tajemstvím zahalený mechanismus svícení luciferázy mořského žahavce renily fialové. Svůj výzkum publikovali v online měsíčníku Nature Catalysis.

Ukázka produkce studeného světla smícháním enzymu luciferázy a luciferinu ve zkumavce v laboratorních podmínkách. Aktuálně však před vědci stojí další výzkumná otázka a to, jak dlouho dokáže enzym svítit bez přerušení. Doposud v laboratorních podmínkách luciferáza rozsvítila zkumavku na 48 hodin.

Obr. Tisková zpráva Recetox, MUNI

 

V 19. století se Thomas Edison nebál experimentovat a jeho vědecké bádání ho přivedlo k vynálezu žárovky, která způsobila technickou revoluci. Avšak současná energetická krize lidstvo nutí hledat jiné způsoby svícení, které by byly udržitelné a zároveň nezatěžovaly životní prostředí. Inspirací vědcům jsou organismy žijící na dně moří a oceánů se schopností produkce a emise „studeného" světla, tzv. bioluminiscence. Brněnští vědci Martin Marek, Martin Toul a Andrea Schenkmayerová z Loschmidtových laboratoří, ve spolupráci s dalšími vědeckými kolegy, popsali proces svícení enzymy, tzv. luciferázami, a také detailně vysvětlili jeho mechanismus. O objasnění tohoto procesu se vědci z celého světa pokoušeli poslední čtyři desítky let, avšak až brněnští vědci na ukázkovém organismu, jímž byl mořský korál Renilla reniformis, odhalili jeho molekulární podstatu.

„Zdroje naší planety nejsou bezedné. Neustále se používají fosilní paliva, která obnovitelná nejsou, a jejich masivní používání má negativní dopady nejen na globální ekosystém, ale též na lidské zdraví. Luminiscenční enzymy by mohly být používány v našich každodenních životech, a nejen v laboratořích, kde se využívají běžně. A právě tím, že jsme detailně zmapovali bioluminiscenční proces na molekulární úrovni, jsme k tomu zase o několik kroků blíže. Při svícení žárovkou se uvolňuje teplo, zatímco luciferázy teplo neuvolňují a dokážou energii velmi efektivně přeměnit na světlo. Náš objev představuje svítící revoluci," říká Ing. RNDr. Martin Marek, Ph.D., vedoucí výzkumné skupiny Strukturní biologie v Loschmidtových laboratořích, RECETOX. 

Vědci objasnili chemické kroky, které jsou klíčové v procesu bioluminiscence. Ukázali, kam a jak se v molekule enzymu váže energeticky bohatý substrát, tzv. luciferin. Pomocí metod strukturní biologie a spektroskopických měření zmapovali enzymatickou oxidaci luciferinu a jeho přeměnu na energeticky bohatý meziprodukt, po jehož rozpadu a dekarboxylaci dochází k emisi viditelného modrého záblesku. Díky pochopení tohoto procesu nyní vědci umí „ladit" enzym tak, aby generoval světlo požadované vlnové délky a s cílenou délkou svícení. 

Pomocí metody rentgenové krystalografie se vědcům z Loschmidtových laboratoří podařilo svítící enzym zachytit přímo v akci. Ačkoliv byla struktura samotného enzymu již zmapována dříve, nově brněnští vědci pomocí metody rentgenové krystalografie dokázali tuto strukturu monitorovat i v okamžiku navázání luciferinu, jehož následnou chemickou přeměnou se generuje světlo. A právě to jim umožnilo detailně popsat reakci, ke které v enzymu dochází. Při své práci metodami proteinového inženýrství též zrekonstruovali předka dnešního enzymu luciferázy renily fialové, a tak poodhalili tajemství jeho evoluce z původně nesvítících enzymů.

 „Byla to hodinářská práce. Vyvinuli jsme z enzymu několik možných předků a následně jsme je porovnávali. Díky tomu jsme přesněji pochopili, jak se vyvíjeli jeden z druhého a ve kterých aspektech se postupně zdokonalovali až do podoby dnešního enzymu s vysokou intenzitou emise světla. To nám nyní umožní posouvat nové luciferázy ještě dále a jejich svícení ještě více zefektivnit," upřesnil RNDr. Martin Toul proces hledání.

Aktuálně však před vědci stojí další výzkumná otázka a to, jak dlouho dokáže enzym svítit bez přerušení. Doposud v laboratorních podmínkách luciferáza rozsvítila zkumavku na 48 hodin. „Omezením zde zůstává naše neznalost, jakým způsobem živé organismy syntetizují energeticky bohatý luciferin. Tak, jako jaderný reaktor potřebuje palivo ve formě obohaceného uranu, tak i luciferázy pro svůj provoz potřebují palivo, a tím je právě onen luciferin. My jsme si osvojili metody, jak luciferiny syntetizovat chemicky v laboratoři, ale tento proces je pro praktické využití ekonomicky neefektivní. Musíme odhalit biosyntetické dráhy vedoucí ke tvorbě luciferinů a jejich recyklace v buňkách, abychom byli schopni sestrojit geneticky kódovaný a energeticky nezávislý zdroj světla," nastiňuje Martin Marek budoucí cesty výzkumu a hledání investorů, kteří by vývoj těchto technologií podpořili.

Ve světě se již vědci zabývají tím, jak využít bioluminiscenční organismy ke svícení, a zjištění brněnských vědců ve spolupráci s francouzskými kolegy umožní přenést tuto myšlenku do každodenního života.

Zdroj: Tisková zpráva MUNI


Literatura:
1. Schenkmayerová, A., Toul, M., Pluskal, D. et al. Katalytický mechanismus pro luciferázy typu Renilla . Nat Catal (2023). https://doi.org/10.1038/s41929-022-00895-z 

Věděli jste, že...

  • Luciferin světlušek vypadá jinak než luciferin měkkýšů nebo bakterií? Různé organismy tak poskytují rozdílné podmínky pro reakci, čímž je ovlivněna barva vyzářeného světla a jeho intenzita.
  • U světlušek svítí samečci i samičky a slabě mohou svítit i vajíčka a larvy?
  • Většina lumineskujících organismů žije v mořích a ve většině případů emitují fialovo-modré světlo?
  • Renilla reniformis je korál ve tvaru listu, kterému se také přezdívá „mořská maceška"?
  • Modré světélkování moří vyvolává řasa svítilka (Noctiluca)?

Zpět

KONGRES U VIKINGŮ

Healthcomm Professional zve lékárníky a farmaceutické asistenty na další, v pořadí již devátý on-line 3D 360° kongres, který proběhne od 11. září do 10. října 2024. V prostředí norského hlavního města nabídne akreditovaná akce nejen zajímavé informace o historii a současnosti farmacie království ze severní Evropy, ale samozřejmě také kvalitní odborný program. On-line kongres bude spuštěný na dobu 30 dní a odborný obsah bude akreditován u ČLnK, ČKFA, SKMTP a POUZP. Registrovat se můžete již nyní na webu Healthcomm.cz

DERIVÁTY HHC MEZI NÁVYKOVÝMI LÁTKAMI

Ministerstvo zdravotnictví dostalo souhlas od Evropské komise pro zařazení psychoaktivních látek HHCP, HHCH, HHCB, HHC-C8, THCH, THCB a THC-C8 a esterů z nich odvozených na seznam návykových látek. S předmětnými látkami mohou zacházet pouze právnické osoby či podnikající fyzické osoby, kterým Ministerstvo zdravotnictví vystavilo povolení k zacházení nebo mají zákonnou výjimku pro toto zacházení, a to pouze k omezeným výzkumným, vědeckým a velmi omezeným terapeutickým účelům. Výrobci, distributoři a prodejci musí zajistit, aby po nabytí účinnosti nevykonávali činnost s předmětnými látkami nebo výrobky, které by tyto látky obsahovaly. V opačném případě se vystavují riziku trestního stíhání. Látky jsou v současné chvíli zařazeny na seznamu návykových látek s časovým omezením do 1. ledna 2025. Jejich další případná reklasifikace závisí na výsledku hodnocení rizik podle nové právní úpravy, která se nyní nachází ve stadiu schvalování v Parlamentu ČR. (MZ ČR)

DOPORUČUJEME